
j.eustache@univ-mulhouse.fr Received July 21, 1999

Sugar-Derived Aziridines:

Aziridine Ring

ABSTRACT

Stereoselective preparation of a new arabinose-derived aziridine and functionalization of the corresponding *N*-BH₃ complex are described. Regio- and stereoselective aspects are discussed.

In the course of a project aimed at identifying inhibitors of mycobacterial arabinosyltransferases, we needed to prepare a series of bicyclic sugar-derived aziridines (1; Figure 1).

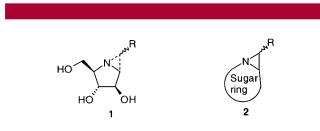


Figure 1. Sugar-derived bicyclic aziridines.

Although simple 1-azabicyclo[3.1.0] octanes are known,^{3a} few nonsubstituted sugar-derived aziridines (**2**, R = H) have been found¹ and, to the best of our knowledge, only two examples of substituted analogues (**2**, $R \neq H$) have been

reported.² The key step in the synthesis of the latter compounds was an intramolecular 1,3-dipolar cycloaddition of δ -azidoalkenes. This reaction, however, is not general³ and may lead to imines or diazo compounds besides (or instead of) the desired aziridines. In addition, the use of 1,3-dipolar cycloadditions for the preparation of *each* member of a series of functionalized aziridines, as required in a medicinal chemistry program, would obviously be cumbersome.

Vedejs and Kendall's recent report on the functionalization of simple aziridine–BH₃ complexes by sequential deproto-

(4) Vedejs, E.; Kendall, J. T. J. Am. Chem. Soc. 1997, 119, 6941–6942.
(5) Bouix, C.; Bisseret, P.; Eustache, J. Tetrahedron Lett. 1998, 39, 825–

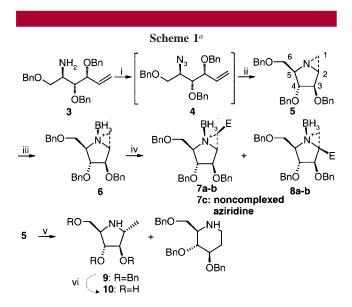
Philippe Bisseret, *, † Claire Bouix-Peter, Olivier Jacques, Stéphanie Henriot, and Jacques Eustache*

Functionalization via Lithiation of the

Laboratoire de Synthèse Organique et de Chimie Microbienne - CNRS UPRESA 7015, Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, 3, Rue Alfred Werner, F-68093 Mulhouse Cedex, France

ORGANIC LETTERS 1999 Vol. 1, No. 8 1181–1182

[†] E-mail: p.bisseret@univ-mulhouse.fr.


^{(1) (}a) Martin, O. R.; Saavedra, O. M. *Tetrahedron Lett.* **1995**, *36*, 4027–4030. (b) Martin, O. R.; Saavedra, O. M. *Tetrahedron Lett.* **1995**, *36*, 799–802. (c) Paulsen, H.; Matzke, M.; Orthen, B.; Nuck, R.; Reutter, W. Liebigs Ann. Chem. **1990**, 953–963. (d) Tong, M. K.; Ganem, B. J. Am. Chem. Soc. **1988**, *110*, 312–313.

⁽²⁾ Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org. Chem. 1990, 55, 4683-4687.

⁽³⁾ The thermal decomposition of olefinic azides is still not well understood and may yield mixtures of products; see for instance: (a) Logothetis, A. L. J. Am. Chem. Soc. **1965**, 87, 749–753. (b) Bernet, B.; Bulusu Murty, A. R. C.; Vasella, A. Helv. Chim. Acta **1990**, 73, 940–958. (c) Krülle, T. M.; dela Fuente, C.; Pickering, L.; Aplin, R. T.; Tsitsanou, K. E.; Zographos, S. E.; Oikonomakos, N. K.; Nash, R. J.; Griffiths, R. C.; Fleet, G. W. J. Tetrahedron: Asymmetry **1997**, 8, 3807–3820.

<sup>828.
(6) (</sup>a) Vasella, A.; Witzig, C.; Chiara, J.-L.; Martin-Lomas, M. *Helv. Chem. Acta* 1991, 74, 2073–2077. (b) Alper, P. B.; Hung, S.-C.; Wong, C.-H. *Tetrahedron Lett.* 1996, 34, 6029–6032. The thermal lability of azide 4 (previously prepared once by another route) has been noted: Pearson, W. H.; Hines, V. A. *Tetrahedron Lett.* 1991, 32, 5513–5516.

nation and quenching with electrophiles⁴ suggested an alternative strategy (Scheme 1). In this approach, a common

^{*a*} Legend: (i) TfN₃, DMAP, CH₃CN, 20 °C, 30 min; (ii) 3 h, 40 °C; (iii) BH₃-THF, 0 °C, 30 min; (iv), sBuLi (4 equiv), (–)-sparteine (4 equiv), cumene, -78 °C, 4 h, then electrophile, 30 min, -78 to 20 °C (electrophile: (a) D₂O, E = D; (b) Bu₃SnCl, E = SnBu₃; (c) P(O)(OEt)₂Cl or P(OEt)₂Cl, E = P(O)(OEt)₂); (v) H₂ (*P* = 5 bar), Pd(OH)₂/C 10%, AcOEt; (vi) H₂ (*P* = 50 bar), Pd (OH)₂/C 10%, iPrOH.

nonsubstituted aziridine is converted to the desired analogues in one step. We report here the facile preparation of the new aziridine **5** and its functionalization via the corresponding borane complex.

Thus, the known primary amine 3^5 was treated with freshly prepared triflic azide in the presence of DMAP, to afford the unstable azide 4,⁶ which was directly converted to a single bicyclic aziridine (**5**) in 55% yield (two steps) upon warming to 40 °C. The 2*R* configuration in **5** was established by nOe measurements and by chemical correlation: hydrogenolysis of the aziridine ring in **5** and removal of the benzyl groups afforded pyrrolidine **10**, whose NMR data were identical with those previously described.⁷ Treatment of **5** with borane in THF gave complex **6** in 90% yield.

Table 1.	Functionalization	of Aziridine-	BH ₃ Complex 6
----------	-------------------	---------------	---------------------------

solvent	electrophile	7:8	yield (%)
THF	D_2O	1:0	10
cumene	D_2O	1:1	80
cumene	Bu ₃ SnCl	5:1	50
cumene	P(O)(OEt) ₂ Cl	1:0	15
cumene	P(OEt) ₂ Cl	1:0	20

Functionalization of **6** was then examined (see Table 1). Whereas deprotonation/quenching with D_2O was sluggish in THF, switching to cumene and using (–)-sparteine as a lithium chelating agent afforded a high yield of deuterated aziridine–BH₃ complexes **7a** and **8a** in a 1:1 ratio. The poor regioselectivity was surprising in light of earlier results⁴ but was expected to improve for bulkier electrophiles. Accordingly, trapping of lithiated **6** with Bu₃SnCl gave a 50% yield of the 1*S* and 2*R* stannylated aziridine–BH₃ complexes **7b** and **8b** in a 5:1 ratio. This expected stereoselectivity is the result of a lithiation step *syn* to the N–B bond followed by electrophilic attack with retention of configuration, in line with Vedejs's results.

Phosphorylation was examined next: using $P(O)(OEt)_2Cl$ or $P(OEt)_2Cl$, the same *noncomplexed* 1S phosphonate **7c** was obtained in modest yield.⁸ In the experiment using $P(OEt)_2Cl$, a spontaneous oxidation obviously takes place during the workup and/or purification steps.

Thus, the above studies show that functionalization of sugar-derived aziridine—borane complexes can be effected by deprotonation followed by quenching with electrophiles. The reaction appears to be both regio- and stereoselective, and although the (nonoptimized) yields are modest in some cases, the approach is competitive in terms of versatility and should allow a ready access to various classes of substituted sugar-derived aziridines.

Acknowledgment. We thank Dr. Didier Le Nouen for help with NMR recording and spectra interpretation and the "Fondation de l'Ecole Nationale Supérieure de Chimie de Mulhouse" for a fellowship to C.B.-P.

Supporting Information Available: Experimental procedures for compounds 4–7 and 9–10 and corresponding ¹H NMR spectra and HRMS data for 7b and 7c. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990841E

⁽⁷⁾ Wang, Y.-F.; Dumas, D. P.; Wong, C.-H. Tetrahedron Lett. 1993, 34, 403–406.

⁽⁸⁾ Whereas **7a**,**b** were isolated as aziridine $-BH_3$ complexes, **7c** was directly obtained as a free, noncomplexed aziridine. We attribute the difference between the stability of complexes **7a**,**b** and that of **7c** to reduced electron density on the nitrogen atom in the latter case.